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Summary 

Theoretical interpretations of the viscoelastic relaxation 
behavior of cross-linked elastomers are discussed. The dangling 
chain retracing mechanisms of deGennes and Pearson-Helfand, which 
assume that the stress contribution of a dangling chain decreases 
as i t  assumes successively lower entropy configurations, are 
replaced by an alternative relaxation mechanism, based on the 
hopping model of hindered diffusion. 

Introduction 

The long-time stress relaxation behavior of cross-linked 
elastomers has been extensively studied by Chasset and Thirion 
(1,2) who find that: 

1. the tensile force can be factorized as a function of time and 
extension. 

2. the tensile force decreases with time according to a power 
law of time. 

It was original ly proposed by Ferry (3) that this stress 
relaxation behavior originates in the diffusion of dangling chains 
in the presence of entanglements. 

Unentan~led Loop Models 

Two theoretical models of the dangling chain relaxation process 
have recently been put forth. Both assume that after the 
application of a step strain, diffusion of the free end of a 
dangling chain towards the fixed end of the chain occurs by a 
retracing or retracting process which results in the formation of 
an unentangled loop; that is, a chain with coincident ends having 
a tree structure with zero topological path. 

In the deGennes model (4,5) the probability of forming an 
unentangled loop is estimated to be 

PN(~) = ~e -~N 
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where N is the number of segments in the dangling chain and B has 
a power law dependence on N (this expression can also be obtained 
using the model of a loop in a tube (6)). The time needed for the 
retracing process to be completed is assumed to be 

Tr~  [PN(~)] " I ~  ~I eeN 

It is argued that at time t ,  n of the segments of the dangling 
chain w i l l  have relaxed by the retracing process and that the 
re lat ionship between n and t is given by the analog of the above 
equation 

t ~ ~I e~n 

Finally, i t  is asserted that at time t ,  the stress contribution of 
the dangling chain is proportional to the fraction of the chain 
segments which has not yet relaxed, ie., 

~t)_ In ( t ~ l )  
d( t )  ~ [ i  - ~ ] ~  [1 - ] :N 

It  has been shown by Curro and Pincus (7) that the combination of 
the deGennes mechanism with an assumed d i s t r i bu t i on  of dangling 
chain lengths resul t ing from a random cross- l ink ing process is 
capable of y ie ld ing  a t rans ient  stress term having the required 
power law time dependence. 

A d i f f e ren t  analysis of the retracing mechanism has been given by 
Pearson and Helfand (8). They state that the continuous decrease 
in entropy that occurs as the free end of the dangling chain moves 
towards the f ixed end of the chain in the retracing process 
creates an increasing potent ia l  f i e l d  through which the free end 
must d i f fuse.  ~ is assumed that at time t ,  the stress 
contr ibut ion of the dangling chain is proport ional to the distance 
between the chain ends that has not h i ther to  been reached by the 
free end. This quant i ty is calculated using the f i rst -passage 
time problem analysis for  the one-dimensional d i f fus ion of a 
pa r t i c le  in a potent ia l  f i e l d .  

I t  has been shown by Curro, Pearson and Helfand (9) that the 
appl icat ion of the Pearson-Helfand mechanism to a randomly cross- 
l inked network structure can produce the desired power law time 
dependent t ransient  stress term. 

Both the deGennes and the Pearson-Helfand mechanisms of dangling 
chain retracing assume that the stress contr ibut ion of a dangling 
chain decreases as i t  adapts successively lower entropy 
conf igurat ions. The behavior of a dangling chain is therefore 
d i rec t l y  opposite to the behavior of a network chain whose stress 
contr ibut ion increases as i t  adapts successively lower entropy 
conf igurat ions. This leads us to suggest an a l te rnat ive  model of 
the relaxat ion of the dangling chain. 
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The Hopping Model 

The following dangling chain relaxation mechanism is proposed: 

After the in i t ia l  deformation of the dangling chain, which occurs 
due to the presence of entanglements along the chain, the chain 
relaxes by diffusing amongst and through the entanglements. The 
process can be viewed as a hindered diffusion, consisting of an 
alternation of movements, or releases, and pauses, or captures. 
Each movement represents a relatively rapid diffusion of the chain 
following i ts release from the constraints of a given entanglement 
and involves the chain assuming higher configurational entropy 
states. Each pause represents a relatively slow diffusion of the 
chain while i t  is s t i l l  subject to the constraints of a given 
entanglement and involves the chain assuming lower configurational 
entropy states as i t  disentangles i t se l f .  The overall relaxation 
process therefore involves passage over a series of free energy 
barriers (saddle points). 

This relaxation mechanism is mathematically expressible by the 
continuous-time random walk or multiple trapping model of 
i t inerant diffusion (10-12). The important quantity in the model 
is the waiting or hopping or pausing time distr ibution, ~ ( t ) .  In 
the classical random walk or diffusion model, ~( t )  has the form 
exp(-xt) and, as a result, there is a f in i te  average time <t> 
between movements. ~ the hopping model, the pausing time 
distribution has the form 

~F (t) ~ t - I '~ 

and, because of the long inverse power ta i l ,  the mean pausing time 
<t> is in f in i te .  This means that movements do not take place at 
any f in i te  constant rate; but instead, are bursts separated by 
pauses of various durations. As the magnitude of ~ decreases, the 
pausing times become longer and, as a result, diffusion becomes 
more hindered. 

This model of hindered diffusion leads to a relaxation function of 
the form 

el /2  
i t 

@ (t) : e 

This is the one-dimensional form of the well known Kohlrausch- 
Williams-Watts function which has been used to describe various 
relaxation processes in many materials, including polymers. 

We are presently examining the ab i l i ty  of the KWW function to f i t  
experimental stress relaxation data. For the purpose of 
comparison, we are also f i t t i ng  the empirical power law 

4 2 form ~( t )  = B2 t . Our preliminary results (13) indicate that 

both two-parameter functions f i t  the data of Chasset-Thirion 
equally well, yielding ~ values in the same range (.1 < ~ < .3). 
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Finally, while the proposed general mechanism of dangling chain 
relaxation by a hindered diffusion process consisting of a series 
of sporadic starts and stops as the chain wends i ts way around and 
through obstacles that are created by the entanglement of the 
chain with other chains and i tse l f  seems quite reasonable, i t  
remains to develop a more specific model of the process and to 
account for the experimentally observed values of the quantity, 
~. We are presently pursuing this goal. 
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